

Прибор

Механизм

Содержание

Узел держателя	4
Механизм	15
Обечайка	20
Стекло	20
Группа контактная	22
Корпус	24
Циферблат	30
Стрелки	32
Основные этапы регулировки	33
Справочная информация	43

Узел держателя

Узел держателя представляет собой держатель и чувствительный элемент, которые соединяют между собой пайкой или сваркой.

Держатель является основанием для крепления трубчатой пружины, изготавливается из медного сплава (ЛС59-1) или стали и имеет различные вырианты резьбы присоединительного штуцера.

Чувствительный элемент имеет вид трубчатой одновитковой пружины при давлении менее или равном 10 МПа и полуторовитковой — при давлении более 100 МПа.

Схема составления заказа на узел держателя

Узел	— МПЗ-У	— У2	— IP40	— (10 МПа)	— ацетилен	— M20×1,5	— Рис. 2
держателя	наименование	климатическое	степень	давление	измеряемая	резьба	номер рисунка
	прибора	исполнение	защиты		среда	на держателе	в каталоге

На рисунках показан один из типов узла держателя применяемых в приборах.

Рис. 1

Применяемость в приборах

ДМ2018; ДА2018 (радиальный штуцер).

Портошио

манометры от 0 до 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25 МПа; мановакуумметры от -0,1 до 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен; пропан-бутан.

Резьба присоединительного штуцера

M10×1; G1/8; K1/8.

Применяемость в приборах

ДМ2018; ДА2018 (осевой штуцер).

Давление

манометры от 0 до 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25 МПа; мановакуумметры от -0,1 до 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен; пропан-бутан.

Резьба присоединительного штуцера

M10×1; G1/8; K1/8.

Рис. 2

Узел держателя

Применяемость в приборах

ДМ2029; ДВ2029; ДА2029.

Давление

манометры от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25 МПа; вакуумметры от -0,1 до 0 МПа; мановакуумметры от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен; пропан-бутан; метан.

Резьба присоединительного штуцера

M12×1,5; G1/4; K1/4; R1/4.

Рис. 3

Применяемость в приборах

МП2-У; ВП2-У; МВП2-У (радиальный штуцер).

Давлени

манометры от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60 МПа; вакуумметры от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен.

Резьба присоединительного штуцера

M12×1,5; G1/4; K1/4; R1/4.

Применяемость в приборах

МП2-У; ВП2-У; МВП2-У (осевой штуцер).

Рис. 4

Давление

манометры от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60 МПа:

вакуумметры от -0,1 до 0 МПа;

мановакуумметры от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен.

Резьба присоединительного штуцера

 $M12\times1,5.$

Рис. 5

Узел держателя

Применяемость в приборах

МПЗ-У; ВПЗ-У; МВПЗ-У; МП; МВП; ДМ2010Сг; ДВ2010Сг; ДА2010Сг; МТПСд-100-0М2; ВТПСд-100-0М2; МВТПСд-100-0М2.

Давление

манометры от 0 до 0,06; 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 МПа; вакуумметры от -0,1; -0,06 до 0 МПа; мановакуумметры от -0,1 до 0,06; 0,15; 3; 5; 9; 15; 24 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ, в том числе кислород; ацетилен; хладоны 12, 13, 22, 142, 502, 134a, 404a.

Резьба присоединительного штуцера

M20 × 1,5; G1/2; K1/2.

Рис. 6

Применяемость в приборах

МПЗ-У; ДМ2010Сг; МТПСд-100-ОМ2.

Давление

манометры от 0 до 10; 16; 25; 40; 60; 100; 160 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен.

Резьба присоединительного штуцера

Рис. 8

M20 × 1,5; G1/2; K1/2.

Рис. 7

Применяемость в приборах

МПЗ-У; ВПЗ-У; МВПЗ-У; МП4-У; ВП4-У; МВП4-У; МП; МВП (осевой штуцер).

Давление

манометры от 0 до 0,06; 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 МПа; вакуумметры от -0,1; -0,06 до 0 МПа; мановакуумметры от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен; хладоны 12, 13, 22, 142, 502, 134a, 404a.

Резьба присоединительного штуцера

M20×1.5; G1/2; K1/2.

Узел держателя

Применяемость в приборах

МПЗ-У; МП4-У; МП; МВП (осевой штуцер).

Давление

манометры от 0 до 10; 16; 25; 40; 60; 100; 160 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен.

Резьба присоединительного штуцера

M20×1,5; G1/2; K1/2.

Рис. 9

Рис. 10

Применяемость в приборах МПЗА-У; МП4А-У.

IVII IOA-Y, IVII I4A-

Давление манометры: от 0 до 10 16; 25; 40; 100; 160 МПа.

Измеряемая среда

жидкий, газообразный и водный раствор аммиака, сероводороды.

Резьба присоединительного штуцера

 $M20 \times 1.5$.

Применяемость в приборах

МПЗ-У; ВПЗ-У; МВПЗ-У.

Давлени

манометры от 0 до 0,06; 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 МПа; вакуумметры от -0,1 до 0 МПа; мановакуумметры от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен; хладоны 12, 13, 22, 142, 502, 134a, 404a.

Резьба присоединительного штуцера

M20×1.5: G1/2: K1/2.

Рис. 11

Узел держателя

Применяемость в приборах

Давление

манометры от 0 до 4; 6; 10 МПа

Применяемость в приборах

МПЗА-У; МВПЗА-У

Давление

манометры от 0 до 1; 1,6; 2,5; 4; 6; 10 МПа; мановакуумметры от -0,1 до 0,9; 1,5; 2,4 МПа.

Измеряемая среда

ацетилен; жидкий, газообразный и водный раствор аммиака.

Резьба присоединительного штуцера

M20×1.5: G1/2: K1/2.

Рис. 12

Применяемость в приборах

МПЗ-У

Давление

манометры от 0 до 10; 16; 25; 40; 60; 100; 160 МПа

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен

Резьба присоединительного штуцера

M20×1.5; G1/2; K1/2

Рис. 13

Рис. 14

Применяемость в приборах

M-3BY; B-3BY; MB-3BY

Давление

манометры от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 МПа; вакуумметры от -0,1; 0,06 до 0 МПа; мановакуумметры от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ, в том числе кислород; ацетилен; хладоны 12, 13, 22, 142, 502; газоводонефтяная эмульсия; нефть и нефтепродукты

Резьба присоединительного штуцера

M20 × 1,5; G1/2; K1/2

Узел держателя

Применяемость в приборах

M-3BY: B-3BY: MB-3BY

Давление

от 0 до 16; 25; 40; 60 МПа

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости, пар и газ, в том числе кислород, ацетилен, хладоны, газоводонефтяная эмульсия, нефть и нефтепродукты.

Резьба присоединительного штуцера

M20x1.5: G1/2: K1/2

Рис. 15

Рис. 16

Применяемость в приборах МП-2, МП-2 диск Давление

манометры от 0 до 0,6; 1; 1,6 МПа

Измеряемая среда

вода, топливо, масло, воздух

Резьба присоединительного штуцера

 $M12 \times 1.5$

Применяемость в приборах

MTΠ-100/1-BУM

Давление

манометры от 0 до 1 МПа

Измеряемая среда

пищевые продукты

Резьба присоединительного штуцера

 $M20 \times 1.5$

Рис. 17

Узел держателя

Рис. 18

Применяемость в приборах

МДП4-СМ-Т.

Давление

манометры от -0,1 до 0,9 МПа.

Измеряемая среда

аммиак с маслом, хладоны 12, 22 с маслом.

Резьба присоединительного штуцера

 $M20 \times 1.5$.

Применяемость в приборах МВП4-СМ-Т.

Давление

мановакуумметры от -0,1 до 0,15; 0,5 МПа.

Измеряемая среда

аммиак с маслом, хладоны 12, 22 с маслом.

Резьба присоединительного штуцера $M20 \times 1.5$.

Рис. 20

Применяемость в приборах

МП4-У; ВП4-У, МВП4-У ДМ2005Сг; ДВ2005Сг; ДА2005Сг.

Давление

манометры от 0 до 0,06 (для МП4-У); 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 MΠa; (для ВП4-У от -0,1; -0,06 до 0 МПа) вакуумметры от -0,1; 0,06 до 0 МПа; мановакуумметры от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен.

Резьба присоединительного штуцера

M20 × 1,5; G1/2; K1/2.

Узел держателя

Применяемость в приборах

МП4-У; ДМ2005Сг.

манометры от 0 до 10; 16; 25; 40; 60; 100; 160 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород; ацетилен.

Резьба присоединительного штуцера

M20×1,5; G1/2; K1/2.

Рис. 21

Применяемость в приборах МП4-У; ВП4-У; МВП4-У.

Давление

манометры от 0 до 0,06; 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 MΠa; вакуумметры от -0,1 до 0 МПа; мановакуумметры от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

некристаллизующихся жидкости; пар; газ, в том числе кислород; ацетилен.

Резьба присоединительного штуцера

M20 × 1,5; G1/2; K1/2.

Рис. 22

Применяемость в приборах

МП4А-У; ВП4А-У; МВП4А-У.

Давление

манометры: от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 МПа; вакуумметры: от -0,1 до 0 МПа; мановакуумметры: от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

жидкий, газообразный и водный раствор аммиака, сероводороды.

Резьба присоединительного штуцера

M20×1,5; G1/2; K1/2.

Рис. 23

Узел держателя

Применяемость в приборах

МП4-У.

Давление

манометры от 0 до 10; 16; 25; 40; 60; 100; 160 МПа.

Измеряемая среда

некристаллизующихся жидкости; пар; газ, в том числе кислород; ацетилен.

Резьба присоединительного штуцера

M20×1,5; G1/2; K1/2.

Применяемость в приборах

МП4А-Кс; ВП4А-Кс; МВП4А-Кс.

Давление

манометры от 0 до 1; 1,6; 2,5; 4; 6; 10 МПа; вакуумметры от -0,1 до 0 МПа; мановакуумметры от -0,1 до 0,9; 1,5; 2,4 МПа.

Измеряемая среда

углеводородный газ и водогазонефтяная эмульсия с содержанием сероводорода (H_2S) и углекислого газа (CO_2) до 25% объемов каждого; неорганические соли и парафин до 10%.

Резьба присоединительного штуцера

 $M20 \times 1,5$.

12

1 1101 2

Рис. 26

Применяемость в приборах МП4А-Кс.

Давление

манометры от 0 до 16; 25; 40; 60; 100; 160 МПа.

Измеряемая среда

углеводородный газ и водогазонефтяная эмульсия с содержанием сероводорода (H₂S) и углекислого газа (CO₂) до 25% объемов каждого; неорганические соли и парафин до 10%.

Резьба присоединительного штуцера

 $M20 \times 1,5.$

Узел держателя

Применяемость в приборах:

ДМ2005Сг1Ех; ДВ2005Сг1Ех; ДА2005Сг1Ех.

Давление:

манометры от 0 до 0,06; 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 МПа; вакуумметры от –0,1 до 0 МПа; мановакуумметры от –0,1 до 0,6; 1,5; 3; 5; 9; 15; 24 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ, в том числе кислород.

Резьба присоединительного штуцера

M20×1,5; G1/2; K1/2.

Рис. 27

Рис. 28

Применяемость в приборах

ДM2005Cг1Ex.

Давлени

манометры от 0 до 16; 25; 40; 60; 100; 160 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород.

Резьба присоединительного штуцера

M20 × 1,5; G1/2; K1/2.

Применяемость в приборах

ДМ2005Cr1ExKc; ДВ2005Cr1ExKc; ДА2005Cr1ExKc.

Давление

манометры от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 МПа; вакуумметры от -0,1 до 0 МПа; мановакуумметры от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

углеводородный газ и водогазонефтяная эмульсия с содержанием сероводорода (H_2S) и углекислого газа (CO_2) до 25% объемов каждого; неорганические соли и парафин до 10%.

Резьба присоединительного штуцера

M20×1,5; G1/2; K1/2.

Рис. 29

Узел держателя

Рис. 30

Применяемость в приборах

ДМ2005Cг1ExKc.

Давление

манометры от 0 до 16; 25; 40; 60; 100; 160 МПа

Измеряемая среда

углеводородный газ и водогазонефтяная эмульсия с содержанием сероводорода (H₂S) и углекислого газа (CO₂) до 25 % объемов каждого; неорганические соли и парафин до 10%.

Резьба присоединительного штуцера

M20×1,5; G1/2; K1/2.

Применяемость в приборах

МПТИ; ВПТИ; МВПТИ.

Давление

манометры от 0 до 0,06; 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 МПа; вакуумметры от -0,1; -0,06 до 0 кгс/см²; мановакуумметры от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород.

Резьба присоединительного штуцера

 $M20 \times 1,5$; G1/2; K1/2.

Рис. 31

Рис. 32

Применяемость в приборах

Давление

манометры от 0 до 16; 25; 40; 60; 100; 160 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости; пар; газ в том числе кислород.

Резьба присоединительного штуцера

M20×1,5; G1/2; K1/2.

Механизм

Механизм состоит из следующих узлов и деталей (см. с. 2): трибка, сектор, плата верхняя, плата нижняя, упор, тяга, ползунок, винт, шайба. Могут поставляться отдельно:

- узел сектора (сектор, ось);
- узел трибки (трибка, узел колодки);
- трибка;
- узел колодки.

Схема составления заказа на механизм

Механизм — МПЗА-У — У2 — (100 МПа) — аммиак — Рис. 2 номер рисунка в каталоге

На рисунках показан один из типов механизма применяемых в приборах.

Рис. 1

Применяемость в приборах МВП4-СМ-Т.

Давление

от -0,1 до 0,15; 0,5 МПа.

Измеряемая среда

аммиак с маслом, хладон с маслом.

Давление

от -0,1 до 0,9 МПа.

Измеряемая среда

аммиак с маслом, хладон с маслом.

Рис. 2

Применяемость в приборах ДМ2018; ДА2018.

Давление

манометры: от 0 до 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25 МПа; мановакуумметры: от -1 до 1,5; 3; 5; 9; 15; 24 кгс/см2.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости, пар и газ, в том числе кислород, ацетилен, пропан-бутан.

Механизм

Применяемость в приборах

МП2-У; ВП2-У; МВП2-У.

Давление

манометры: от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60 кгс/см МПа;

вакуумметры: от -0,1; -0,06 до 0 МПа;

мановакуумметры: от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости, пар и газ, в том числе кислород, ацетилен.

Рис. 4

Рис. 5

Применяемость в приборах

МП2-У; ВП2-У; МВП2-У (осевой штуцер).

Давление

манометры: от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60 МПа; вакуумметры: от -0,1; -0,06 до 0 МПа;

мановакуумметры: от –0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости, пар и газ, в том числе кислород, ацетилен.

Применяемость в приборах

М-3ВУ; В-3ВУ; МВ-3ВУ.

Давление

манометры: от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60; 100; 160 МПа; вакуумметры: от -0,1; -0,06 до 0 МПа; мановакуумметры: от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости, пар и газ, в том числе кислород, ацетилен, хладоны, газоводонефтяная эмульсия, нефть и нефтепродукты.

Рис. 6

Механизм

Рис. 7

Применяемость в приборах

МП-2, МП-2 диск.

Давление

МП-2 от 0 до 0,6; 1; 1,6 МПа; МП-2 диск от 0 до 1 МПа.

Измеряемая среда

вода, топливо, масло, воздух.

Применяемость в приборах

МТПСд-100-ОМ2; ВТПСд-100-ОМ2; МВТПСд-100-ОМ2.

Давление

манометры: от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10 МПа; вакуумметры: от -0,1 до 0 МПа; мановакуумметры: от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости, пар и газ, в том числе кислород, хладоны, дизельное топливо, масла, морская вода.

Рис. 8

Рис. 9

Применяемость в приборах МТП-100/1-ВУМ.

Давление от 0 до 1 МПа.

Измеряемая среда

Измеряемая среда пищевые продукты.

17

Механизм

Применяемость в приборах

ДМ2029; ДВ2029; ДА2029.

Давление

манометры: от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25 МПа; вакуумметры: от –0,1 до 0 МПа; мановакуумметры: от –0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа.

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости, пар и газ, в том числе кислород, ацетилен, пропан-бутан, метан.

Рис. 10

Рис. 11

Применяемость в приборах

ДМ2005Сг1ExKc; ДВ2005Сг1ExKc; ДА2005Сг1ExKc; МП3A-У; ВП3A-У; МВП3A-У; МВП4A-У; МВП4A-У; МВП4A-У.

Давление

манометры: от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60; 100; 160 МПа вакуумметры: от -0,1 до 0 МПа; мановакуумметры: от -0,1 до 0,06; 0,15; 0,3; 0,5; 0,9; 1,5; 2,4 МПа

Измеряемая среда

Жидкий, газообразный и водный раствор аммиака, сероводороды.

Применяемость в приборах

ДМ2005Сг1Ex; ДВ2005Сг1Ex; ДА2005Сг1Ex; МП; МВП; МТПСд-100-0M2 (св. 10 МПа); МП3-У; ВП3-У; МВП3-У; МП4-У; ВП4-У; МВП4-У.

Давление

манометры: от 0 до 0,1; 0,16; 0,25; 0,4; 0,6; 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60; 100; 160 МПа; вакуумметры: от -0,1; -0,06 до 0 МПа; мановакуумметры: от -1 до 0,6; 1,5; 3; 5; 9; 15; 24 кгс/см².

Измеряемая среда

Неагрессивные, некристаллизующиеся жидкости, пар и газ, в том числе кислород, ацетилен, хладоны, дизельное топливо, масло, морская вода.

Рис. 12

Механизм

Рис. 13

Применяемость в приборах

МПТИ; ВПТИ; МВПТИ.

Давление

манометры: от 0 до 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60; 100; 160; 250; 400; 600 кгс/см 2 ; вакуумметры: от -1 до 0 кгс/см 2 ; мановакуумметры: от -1 до 0,6; 1,5; 3; 5; 9; 15; 24 кгс/см 2 .

Измеряемая среда

неагрессивные, некристаллизующиеся жидкости, пар и газ, в том числе кислород.

МП4А-Кс, ВП4А-Кс, МВП4А-Кс; МП3А-У; ВП3А-У; МВП3А-У; МП4А-У; ВП4А-У; МВП4А-У.

Давление

манометры: от 0 до 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60; 100; 160; 250; 400; 600; 1000; 1600 кгс/см²; вакуумметры: от -1; -0,6 до 0 кгс/см²; мановакуумметры: от -1 до 0,6; 1,5; 3; 5; 9; 15; 24 кгс/см².

Измеряемая среда

Жидкий, газообразный и водный раствор аммиака, сероводороды.

Рис. 14

Рис. 15

Применяемость в приборах

МП3-У; ВП3-У; МВП3-У; МП4-У; ВП4-У; МВП4-У.

Давление

манометры: от 0 до 1; 1,6; 2,5; 4; 6; 10; 16; 25; 40; 60; 100; 160; 250; 400; 600; 1000; 1600 кгс/см² вакуумметры: от –1; –0,6 до 0 кгс/см²; мановакуумметры: от –1 до 0,6; 1,5; 3; 5; 9; 15; 24 кгс/см².

Измеряемая среда

Неагрессивные, **некри**сталлизующиеся жидкости, пар и газ, в том числе кислород, ацетилен, хладоны.

Обечайка

Схема составления заказа на обечайку

Обечайка — МПЗ-У — У2 — IP40 — Э наименование климатическое степень защиты для приборов прибора исполнение на экспорт

Для приборов ДМ2010Сг, ДМ2005Сг поставляют только узел обечайки (см. таблицу 1). Узел обечайки ДМ2010Сг, ДМ2005Сг включает в себя: гайку, кольцо, обечайку, прокладку, рычаг, стекло, экран.

Стекло

При заказе стекла необходимо указать наименование прибора и данные согласно таблицам 1—3.

Для приборов ДМ2005Сг1Ex, ДМ2005Сг1ExКс поставляют только узел стекла. Узел стекла ДМ2005Сг1Ex, ДМ2005Сг1ExКс состоит из следующих частей:

втулка, гайка, кнопка, поводок, прокладка, пружина, стекло.

Для приборов ДМ2010Сг, ДМ2005Сг стекло поставляют отдельно, а также в виде сборки стекла — узла рычага установочного и стекла с обечайкой.

Узел рычага установочного ДМ2010Сг, ДМ2005Сг состоит из следующих частей:

• ось, прокладка, пружина, рычаг, стекло-кнопка.

Стекло с обечайкой

Таблица 1

Наименование прибора	Сборка	Материал стекла
ДМ2010Сг	обечайка (5Ш6.115.001-01)	стекло литое
ДМ2010Сг	обечайка (5Ш6.115.001-05)	плоское органическое стекло
ДМ2010Сг АЭС	обечайка (5Ш6.115.001-13)	стекло (оконное) листовое
ДМ2005Сг	обечайка (5Ш6.115.008-04)	стекло литое
ДМ2005Сг	обечайка (5Ш6.115.008-07)	плоское органическое стекло
ДМ2005Сг АЭС	обечайка (5Ш6.115.001-15)	стекло (оконное) листовое

Стекло

Стекло с рычагом установочным

Таблица 2

Наименование прибора	Сборка	Материал стекла
ДМ2010Сг	рычаг установочный (5Ш6.354.015-01)	стекло литое
ДМ2010Сг	стекло (5Ш8.640.020-01) + рычаг установочный (5Ш6.354.002-01)	плоское органическое стекло
ДМ2010Сг АЭС	стекло (5Ш8.640.020-06) + рычаг установочный (5Ш6.354.002-01)	стекло (оконное) листовое
ДМ2005Сг	рычаг установочный (5Ш6.354.015-03)	стекло литое
ДМ2005Сг	стекло (5Ш8.640.020-02) + рычаг установочный (5Ш6.354.002-01)	плоское органическое стекло
ДМ2005Сг АЭС	стекло (5Ш8.640.020-04) + кнопка (5Ш6.356.000-06)	стекло (оконное) листовое

Таблица 3

Ди	аметр стекла, мм	Применяемость	в приборах
93	(5Ш8.640.001-01)	МПЗ-У; МВПЗ-У; ВПЗ-У; МПЗА-У; МВПЗА-У; Е	ВПЗА-У(осев.)
98	(5Ш8.640.001-02)	МПЗ-У; МВПЗ-У; ВПЗ-У; МПЗА-У; МВПЗА-У; Е	ВПЗА-У
151	(5Ш8.640.001-03)	МП4-У; МВП4-У; ВП4-У(осев.ІР40)	
158	(5Ш8.640.001-04)	МП4-У; МВП4-У; ВП4-У; МП4А-У; МВП4А-У; Е	ВП4А-У
96,5	(5Ш8.640.001-08)	МТП-100/1-ВУМ	
138	(5Ш8.640.002)	ДМ2005Сг1Ех; ДВ2005Сг1Ех; ДА2005Сг1Ех	
94	(5Ш8.640.005-01)	М-3ВУ; МВ-3ВУ; В-3ВУ; МП; МВП; МП-2; МП- МПЗА-У; МВПЗА-У; ВПЗА-У (IP53); МТПСд-10 ВТПСд-100-ОМ2	
153,5	(5Ш8.640.005-02)	МП4А-Кс; МВП4А-Кс; ВП4А-Кс; МПТИ; ВПТИ	; МВПТИ; МВП4-СМ-Т; МДП4-СМ-Т
98	(5Ш8.640.035)	ДМ2010Сг; ДА2010Сг; ДВ2010Сг	
158	(5Ш8.640.039)	ДМ2005Сг; ДА2005Сг; ДВ2005Сг	
58,5	(5Ш8.640.029)	МП2-У; МВП2-У; ВП2-У	
58,5	(5Ш8.640.031)	МП2-У; МВП2-У; ВП2-У	
40	(5Ш8.640.041)	ДМ2018; ДА2018	
50	(5Ш8.640.042)	ДМ2029; ДА2029; ДВ2029	
94	(5Ш8.640.071-01)	М-3ВУКс	
156	(5Ш8.640.071-02)	М-4ВУКс	

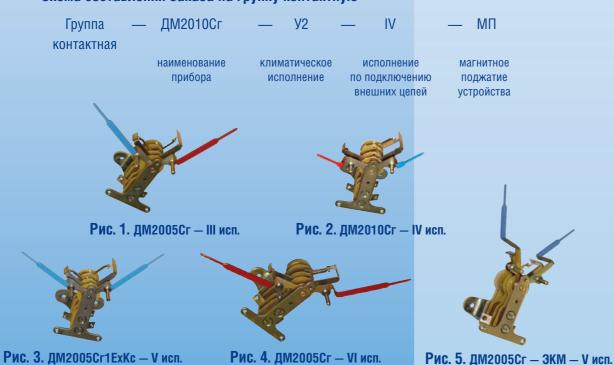
Группа контактная

Группа контактная — сигнализирующее устройство прямого действия, замыкание и размыкание контактов электрической цепи которого осуществляется без преобразования энергии.

Выполняется со скользящими контактами (по умолчанию) и с магнитным поджатием контактов.

Напряжение внешних коммутируемых цепей:

- 380 B (включая 24; 27; 36; 40; 110; 220 B) для цепей переменного тока;
- 220 В (включая 24; 27; 36; 40; 110 В) для цепей постоянного тока.


Разрывная мощность контактов сигнализирующего устройства:

- со скользящими контактами 10 Вт постоянного тока и 20 В•А переменного тока;
- с магнитным поджатием контактов 30 Вт постоянного тока и 50 В•А переменного тока.

Значение коммутируемого тока должно быть:

- для сигнализирующего устройства со скользящими контактами от 0,02 до 0,5 А;
- для сигнализирующего устройства с магнитным поджатием контактов от 0,01 до 1 А. Подключение осуществляется четырехжильным кабелем, сечение жил от 0,2 до 1,5 мм². Диаметр ввода в разъеме от 4 до 10 мм.

Схема составления заказа на группу контактную

Группа контактная

Проведение регулировки приборов с электроконтактным сигнализирующим устройством

- 1. Перед установкой сигнализирующего устройства проверить:
- пересечение подвижных замыкающихся (размыкающихся) контактов;
- соосность осей рычагов. Отклонение от соосности должно быть не более 0,1 мм;
- биение магнитов относительно контактов рычагов во всем диапазоне установок.

Биение должно быть не более 0,4 мм;

- плавность хода рычагов и указателей.
- 2. Установить сигнализирующее устройство на прибор таким образом, чтобы отклонение от соосности осей трибки и рычагов было не более 0,2 мм.
- 3. Подключить соединительные провода согласно маркировки проводов и клемм, подключить сигнальные лампочки для контроля срабатывания сигнализирующего устройства.
- 4. Установить указатель «min» на среднюю оцифрованную отметку шкалы и подать давление до срабатывания сигнализирующего устройства. Если погрешность срабатывания сигнализирующего устройства превышает допустимые значения, то необходимо подогнуть или отогнуть пружину (ламель) в зависимости от значения погрешности и вновь проверить погрешность срабатывания сигнализирующего устройства. Затем определить вариацию срабатывания сигнализирующего устройства. Необходимая величина вариации для сигнализирующего устройства с магнитным поджатием устанавливается перемещением магнита относительно рычага путем ввинчивания или вывинчивания его. Подобную операцию проделать с указателем «max». Основную погрешность срабатывания сигнализирующего устройства определять при замыкании контактов.
- 5. Проверить погрешность срабатывания и вариацию срабатывания сигнализирующего устройства на отметках шкалы, соответствующих 25 % и 75 % верхнего предела измерений. Они должны удовлетворять требованиям ТУ.
- 6. Для приборов, в сигнализирующих устройствах которых используются магниты, притяжение магнитов должно быть таким, чтобы в момент разрыва контактов был бы заметен четкий скачок показывающей стрелки прибора. Скачок стрелки при срабатывании должен находиться в пределах, ограниченных полной погрешностью срабатывания сигнализирующего устройства.
- 7. После определения погрешности срабатывания и вариации срабатывания сигнализирующего устройства, магниты законтрить.
- 8. Определить основную погрешность и вариацию показаний показывающей части прибора, при этом указатели сигнализирующего устройства должны находиться за пределами крайних отметок шкалы.
- 9. Произвести окончательную сборку прибора и проверить работу установочного рычага. При необходимости допускается подгиб рычага.

Корпус

Корпуса выпускаются следующих диаметров: 40, 50, 60, 100 и 160 мм. Материал корпуса: сталь, алюминий, полистирол.

Схема составления заказа на корпус

Корпус — МПЗ — У2 — IP40 — (100 кгс/см²) — Ф — ОШ наименование климатическое степень верхнее значение диапазона показаний наличие расположение прибора исполнение защиты (для электроконтактных приборов) фланца штуцера

Применяемость в приборах ДМ2018; ДА2018.

Варианты исполнения для приборов

- 1) с радиальным штуцером без фланца;
- 2) с осевым штуцером без фланца (рис. 1).

Диаметр корпуса 40 мм.

Материал корпуса

сталь

Рис. 1

Рис. 2

Применяемость в приборах ДМ2029; ДА2029; ДВ2029.

Варианты исполнения для приборов

1) с радиальным штуцером без фланца (рис. 2).

Диаметр корпуса 50 мм.

Материал корпуса

сталь.

Корпус

Применяемость в приборах МП2-У: ВП2-У: МВП2-У.

Варианты исполнения для приборов

с радиальным штуцером без фланца (рис. 3);
 с радиальным штуцером с задним фланцем;
 с осевым штуцером с передним фланцем;
 с осевым штуцером без фланца.

Диаметр корпуса 60 мм.

Материал корпуса

сталь.

Рис. 3

Применяемость в приборах МПЗ-У; ВПЗ-У; МВПЗ-У.

Вариант исполнения для приборов

- 1) с радиальным штуцером без фланца;
- 2) с радиальным штуцером с задним фланцем (рис. 4);
- 3) с осевым штуцером с передним фланцем;
- 4) с осевым штуцером без фланца.

Диаметр корпуса 100 мм.

Материал корпуса

сталь, алюминиевый сплав, ударопрочный полистирол.

Применяемость в приборах

МПЗА-У; ВПЗА-У; МВПЗА-У.

Вариант исполнения для приборов

- 1) с радиальным штуцером без фланца;
- 2) с радиальным штуцером с задним фланцем (рис. 4).

Диаметр корпуса 100 мм.

Материал корпуса

сталь, алюминиевый сплав.

Рис. 4

Применяемость в приборах

МТПСд-100-ОМ2; ВТПСд-100-ОМ2; МВТПСд-100-ОМ2; МП, МВП (хладон).

Вариант исполнения для приборов

1) с радиальным штуцером с задним фланцем (рис. 5); 2) с радиальным штуцером без фланца (для МТПСд-100-ОМ2, ВТПСд-100-ОМ2, МВТПСд-100-ОМ2).

Диаметр корпуса 100 мм.

Материал корпуса

алюминиевый сплав.

Рис. 5

Корпус

Применяемость в приборах

МП4-У; МВП4-У; ВП4-У.

Вариант исполнения для приборов

- 1) радиальный штуцер без фланца;
- 2) радиальный штуцер с задним фланцем (рис. 6);
- 3) осевой штуцер с передним фланцем;

4) осевой штуцер без фланца.

Диаметр корпуса 160 мм.

Материал корпуса сталь, алюминиевый сплав, ударопрочный полистирол.

Применяемость в приборах

МП4А-У; МВП4А-У; ВП4А-У.

Вариант исполнения

- 1) радиальный штуцер без фланца;
- 2) радиальный штуцер с задним фланцем (рис. 6).

Диаметр корпуса 160 мм.

Материал корпуса

сталь, алюминиевый сплав.

Применяемость в приборах

МП; МВП.

Варианты исполнения для приборов

Рис. 6

1) с радиальным штуцером с задним фланцем (рис. 7).

Диаметр корпуса 100 мм.

Материал корпуса

алюминиевый сплав.

Рис. 7

Рис. 8

Применяемость в приборах

МП-2; МП-2 диск.

Варианты исполнения для приборов

1) с осевыми штуцерами с задним фланцем (рис. 8).

Диаметр корпуса 100 мм.

Материал корпуса

алюминиевый сплав.

Корпус

Применяемость в приборах

MTΠ-100/1-BУM.

Варианты исполнения для приборов

1) с радиальным штуцером без фланца (рис. 9).

Диаметр корпуса 100 мм.

Материал корпуса

алюминиевый сплав.

Рис. 9

Применяемость в приборах ДМ2010Сг; ДА2010Сг; ДВ2010Сг.

Варианты исполнения для приборов

1) с радиальным штуцером с задним фланцем (рис. 10); 2) с осевым штуцером с задним фланцем.

Диаметр корпуса 100 мм.

Материал корпуса

алюминиевый сплав.

Применяемость в приборах

М-3ВУ; В-3ВУ; МВП-3ВУ.

Вариант исполнения для приборов

1) с радиальным штуцером без фланца (рис. 11);

Рис. 10

2) с радиальным штуцером с задним фланцем.

Диаметр корпуса 100 мм.

Материал корпуса

алюминиевый сплав.

Рис. 11

Корпус

Рис. 12

Применяемость в приборах

ДМ2005Сг; ДА2005Сг; ДВ2005Сг.

Варианты исполнения в приборах

1) с радиальным штуцером без фланца (рис. 12); 2) с радиальным штуцером с задним фланцем.

Диаметр корпуса 160 мм.

Материал корпуса

сталь, алюминиевый сплав.

Применяемость в приборах

ДМ2005Cr1Ex; ДВ2005Cr1Ex; ДА2005Cr1Ex; ДМ2005Cr1ExKc; ДВ2005Cr1ExKc; ДА2005Cr1ExKc.

Варианты исполнения для приборов

1) с радиальным штуцером с задним фланцем (рис. 13).

Диаметр корпуса 160 мм.

Материал корпуса и основания

алюминиевый сплав.

28

Рис. 13. Основание корпуса (Корпус поставляется совместно с основанием)

Рис. 14

Применяемость в приборах МПТИ; МВПТИ; ВПТИ.

Варианты исполнения для приборов

1) с радиальным штуцером без фланца (рис. 14).

Диаметр корпуса 160 мм.

Материал корпуса

алюминиевый сплав.

Применяемость в приборах МП4А-Кс; ВП4А-Кс; МВП4А-Кс.

Варианты исполнения для приборов

1) с радиальным штуцером без фланца (рис. 15).

Диаметр корпуса 160 мм.

Материал корпуса

алюминиевый сплав.

Рис. 15

Рис. 16

Применяемость в приборах

МДП4-СМ-Т; МВП4-СМ-Т.

Варианты исполнения для приборов

1) с радиальным штуцером с задним фланцем (рис. 16).

Диаметр корпуса 160 мм.

Материал корпуса алюминиевый сплав.

Циферблат

Циферблат изготавливается из стали или алюминиевого сплава.

Цвет циферблата — белый, но по требованию заказчика покрывается люминофором и на приборы МП и МП2 изготавливается черного цвета.

По отдельному заказу на циферблат наносится красная черта, температурная шкала (для хладона и аммиака).

На циферблате прибора согласно ТУ наносятся следующие обозначения:

- единица измерения (междунородное обозначение);
- класс точности;
- условное обозначение прибора с указанием вида климатического исполнения по ГОСТ 15150
- наименование или условное обозначение измеряемой среды по ГОСТ 2405 при специальном исполнении прибора (табл. 4);
 - степень защиты прибора по ГОСТ 14254;
 - надпись «РОССИЯ» (наносится на приборах для экспорта).
 - знак утверждения типа средств измерений по ПР 50.2.009;
 - Знак соответствия
- товарный знак предприятия-изготовителя (на приборах для экспорта не наносится);
- номер прибора по системе нумерации предприятия изготовителя (по заказу).
- максимальное напряжение и максимальная разрывная мощность контактов;
 - знак / по ГОСТ 2930 (для электроконтактых приборов);
- для приборов исполнения «1Ex» дополнительно наносится: температура окружающей среды t_a с указанием диапазона –50 °C≤t_a≤+60 °C;

Для приборов, поставляемых на экспорт, все надписи, кроме условного обозначения приборов, выполняются на языке, указанном в заявке потребителя.

Схема составления заказа на циферблат

 Циферблат
 — МПЗ-У
 — У2
 — 1,5
 — IP40
 — (100 кПа)
 — ацетилен
 — Э

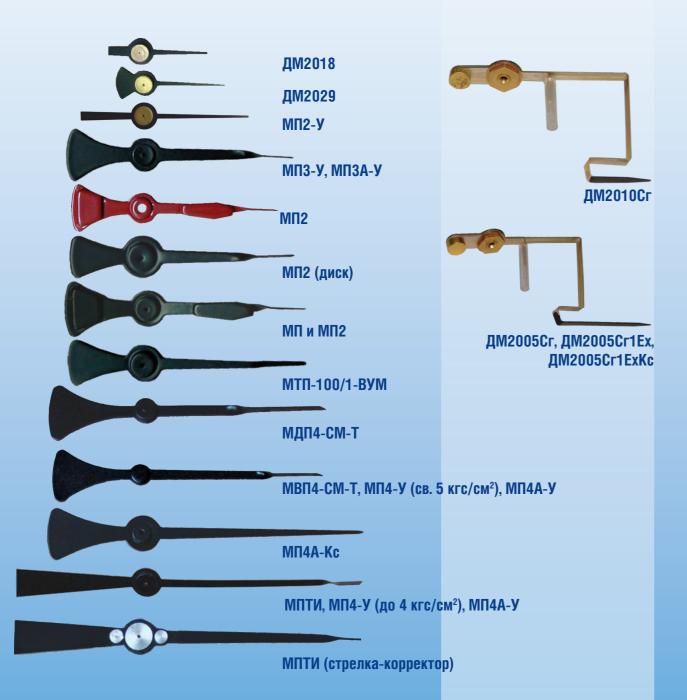

 наименование климатическое класс прибора исполнение точности
 защиты
 степень давление измеряемая для приборов

Циферблат

Таблица 4

Условные обозначения, наносимые на циферблаты приборов, предназначенных для измерения давления сред с определенными свойствами

Предмет обозначения	Наименование	Форма условного обозначения	Примечание
	Кислород Маслоопасно		
	Ацетилен	(C_2H_2)	
	Газ	GAS	
ая среда	Жидкость	LIQ	
Измеряемая среда	Водород	(H_2)	Обозначение при градуировке или измерении среды
	Сероводород	H_2S	
	Аммиак	(NH ₃)	
	Хладон	Rn	n — числовое обозна- чение хладона



Стрелки

В данном разделе представлены некоторые образцы стрелок для манометров, изготавливаемых ОАО «Манотомь».

Схема составления заказа на стрелку

Стрелка — МПЗ-У — У2 — (100 кПа) наименование климатическое давление

Основные этапы регулировки

- I. Внешний осмотр;
- II. Регулировка:
 - 1. Установить механизм:
 - а) закрутить (раскрутить) спираль;
 - б) ползунки в среднее положение на секторе и наконечнике;
 - в) установить зацепление сектора (за счет увеличения или уменьшения длины тяги);
 - г) проверить люфт в тяге.
 - 2. Установить шкалу и стрелку на нулевой отметке;
 - 3. Создать давление соответствующее верхнему пределу измерения. При этом:
 - а) стрелка установилась на отметку верхнего предела измерения;
 - б) стрелка не дошла до отметки верхнего предела измерения;
 - в) стрелка перешла отметку верхнего предела измерения.
 - 4. Установить требуемые диапазоны:
 - а) подать ползунок к оси сектора (для случая 3б);
 - б) подать ползунок от оси сектора (для случая 3в).
 - 5. Проверить правильность установки диапазона, проверить линейность хода стрелки по каждой отметке.
 - 6. Устранить нелинейность (если она присутствует):
 - а) при опережении показаний тягу удленить путем перемещения ползунка в пазу наконечника (вправо);
 - б) при отставании показаний тягу укоротить путем перемещения ползунка в пазу наконечника (влево).
 - 7. Снять стрелку, шкалу. Проверить затяжку винтов, произвести контровку, выставить упор (просвет между сектором и упором 1 мм max).
 - 8. Установить шкалу (допускается соосность отверстия циферблата относительно оси трибки 0,5 мм).
 - 9. Установить стрелку.
 - 10. Проверить правильность показаний прибора:
 - а) класс точности 0,4; 0,6 по 8 значениям давления;
 - б) класс точности 1; 1,5; 2,5; 4 по 5 значениям давления.

Примечание - Поверку приборов проводят по МИ 2124-90 и справочной таблице 5.

Таблица 5

Число делений	Диапазон показаний,	Цена деления,		каемая основная огрешность
писло делении	kgf/cm²	Vat/cm²	kgf/cm²	в долях от цены деления
		Класс точности 0,4		
	0-0,6	0,002	0,0024	
	0–6	0,02	0,024	
300	0–60	0,2	0,24	1,2
	0–600	2	2,4	
	-1-0-5	0,02	0,024	
	0–1	0,005	0,004	
	0–10	0,05	0,04	
200	0–100	0,5	0,4	0,8
200	0–1000	5	4	0,0
	-1-0	0,005	0,004	
	-1-0-9	0,05	0,04	
	0–1,6	0,005	0,0064	
	0–16	0,05	0,064	
320	0–160	0,5	0,64	1.00
320	0–1600	5	6,4	1,28
	-1-0-0,6	0,005	0,0064	
	-1-0-15	0,05	0,064	
	0–2,5	0,01	0,01	
	0–25	0,1	0,1]
250	0–250	1	1	1
	-1-0-1,5	0,01	0,01	
	-1-0-24	0,1	0,1	
	0–4	0,02	0,016	
200	0–40	0,2	0,16	0,8
200	0–400	2	1,6	0,0
	_1_0_3	0.02	0.016	

Основные этапы регулировки

	Диапазон			саемая основная
Число делений	показаний,	Цена деления,	п	огрешность -
	kgf/cm²	kgf/cm²	kgf/cm ²	в долях
		Класс точности 0,6		от цены деления
	0.06	0,005	1 0,0026	<u> </u>
	0-0,6	 	0,0036	-
100	0–6 0–60	0,05	0,036	0.70
120		0,5	0,36	0,72
	0-600	5	3,6	
	-1-0-5	0,05	0,036	
	0–2,5	0,02	0,015	
	0–25	0,2	0,15	
125	0–250	2	1,5	0,75
	-1-0-1,5	0,02	0,015	
	-1-0-24	0,2	0,15	
	0–4	0,05	0,024	0,48
80	0–40	0,5	0,24	
00	0–400	5	2,4	
	-1-0-3	0,05	0,024	
	0–1,6	0,01	0,0096	
	0–16	0,1	0,096	
100	0–160	1	0,96	0.00
160	0–1600	10	9,6	0,96
	-1-0-0,6	0,01	0,0096	
	-1-0-15	0,1	0,096	
	0–1	0,01	0,006	
	0–10	0,1	0,06	
100	0–100	1	0,6	0.0
100	0–1000	10	6	0,6
	-1-0	0,01	0,006	
	-1-0-9	0,1	0,06	

Продолжение таблицы 5

Uvoro rozowy	Диапазон	Цена деления,		саемая основная огрешность
Число делений	показаний, kgf/cm²	VOI/CM4	kgf/cm²	в долях от цены деления
	0–4	0,05	0,04	
80	0–40	0,5	0,4	0,8
00	0–400	5	4	0,0
	-1-0-3	0,05	0,04	
	0–0,6	0,005	0,006	
	0–6	0,05	0,06	
120	0–60	0,5	0,6	1,2
	0–600	5	6	
	-1-0-5	0,05	0,06	
	0–2,5	0,02	0,025	
	0–25	0,2	0,25	
125	0–250	2	2,5	1,25
	-1-0-1,5	0,02	0,025	
	-1-0-24	0,2	0,25	
	0–1,6	0,01	0,016	
	0–16	0,1	0,16	
160	0–160	1	1,6	1,6
100	0–1600	10	16	1,0
	-1-0-0,6	0,01	0,016	
	-1-0-15	0,1	0,16	
	0–1	0,01	0,01	
	0–10	0,1	0,1	
100	0–100	1	1	1
100	0–1000	10	10	
	-1-0	0,01	0,01	
	-1-0-9	0,1	0,1	

Основные этапы регулировки

Число делений	Диапазон показаний,	Цена деления,		аемая основная огрешность		
число делении	kgf/cm²	kgf/cm²	kgf/cm²	в долях от цены деления		
Класс точности 1,0						
	0–0,6	0,01	0,006			
	0–6	0,1	0,06			
60	0–60	1	0,6	0,6		
00	0–600	10	6	0,0		
	-0,6-0	0,01	0,006			
	_1_0_5	0,1	0,06			
30	_1_0_3	0,2	0,00	0,3		
	0–1	0,02	0,01			
	0–10	0,2	0,1			
50	0–100	2	1	0,5		
50	0–1000	20	10	0,5		
	-1-0	0,02	0,01			
	-1-0-9	0,2	0,1			
	0–1,6	0,02	0,016			
	0–16	0,2	0,16			
80	0–160	2	1,6	0.0		
δU	0–1600	20	16	0,8		
	-1-0-0,6	0,02	0,016			
	1 0 15	0,2	0.10			
32	_1_0_15	0,5	0,16	0,32		
	0–2,5	0,05	0,025			
	0–25	0,5	0,25			
50	0–250	5	2,5	0,5		
	-1-0-1,5					
	-1-0-24	0,5	0,25			
	0-4	0,1	0,04			
	0–40	1	0,4			
40	0–400	10	4	0,4		
	-1-0-3	0,1	0,04			
	1-0-0	0,1	0,04			

Продолжение таблицы 5

Uuono no	Диапазон	Цена деления,		аемая основная огрешность
Число делений	сло делений показаний, цен kgf/cm²	kgf/cm²	kgf/cm²	в долях от цены деления
		Класс точности 1,5		
	0-0,6	0,01	0,009	
	0–6	0,1	0,09	
60	0–60	1	0,9	0,9
00	0–600	10	9	0,9
	-0,6-0	0,01	0,009	
	1.0.5	0,1	0.00	
30	-1-0-5	0,2	0,09	0,45
	0–1	0,02	0,015	
	0–10	0,2	0,15	
FO	0–100	2	1,5	0.75
50	0–1000	20	15	0,75
	-1-0	0,02	0,015	
	-1-0-9	0,2	0,15	
	0–1,6	0,02	0,024	
	0–16	0,2	0,24	1
00	0–160	2	2,4]
80	0–1600	20	24	1,2
	-1-0-0,6	0,02	0,024	1
	1 0 45	0,2	0.04	1
	-1-0-15	0,5	0,24	
	0–1,6	0,05	0,024	
32	0–16	0,5	0,24	0,48
	0–160	5	2,4	
	-1-0-0,6	0,05	0,024	
	0–2,5	0,05	0,0375	
	0–25	0,5	0,375	
50	0–250	5	3,75	0,75
	-1-0-1,5	0,05	0,0375	
	-1-0-24	0,5	0,375	

Основные этапы регулировки

Число делений	Диапазон показаний,	Цена деления,	1	саемая основная огрешность		
імоло делении	kgf/cm ²	kgf/cm²	kgf/cm²	в долях от цены деления		
Класс точности 1,5						
	-1-0-1,5	0,1	0,0375			
25	0-2,5			0,375		
	0-25	1	0,375	,		
	0-250	10	3,75			
	0–4	0,05	0,06			
80	0–40	0,5	0,6	1,2		
00	0–400	5	6	1,2		
	-1-0-3	0,05	0,06			
	0–4	0,1	0,06			
40	0–40	1	0,6	0,6		
40	0-400	10	6	0,0		
	-1-0-3	0,1	0,06			
		Класс точности 2,5				
	0-0,6	0,01	0,015			
	0–6	0,1	0,15			
00	0–60	1	1,5]		
60	0–600	10	15	1,5		
	- 0,6-0	0,01	0,015			
		0,1				
	-1-0-5		0,15			
30	0–6	0,2		0,75		
	0–60	2	1,5			
	0–1	0,02	0,025			
	0–10	0,2	0,25			
	0–100	2	2,5			
50	0–1000	20	25	1,25		
	-1-0	0,02	0,025			
	-1-0-9	0,2	0,25			
	1 0 0	J, L	0,20			

Продолжение таблицы 5

U	Диапазон	Цена деления,	Допускаемая основная погрешность				
Число делений	показаний, kgf/cm²	kgf/cm²	kgf/cm²		в долях от цены делени		
		Класс точности 2,5					
	0–1,6	0,02	0,04	4			
	0–16	0,2	0,4				
00	0–160	2	4		0		
80	0–1600	20	40		2		
	-1-0-0,6	0,02	0,04	4			
	4.0.45	0,2	0.4				
32	_1_0_15	0,5	0,4		0,8		
	0–2,5	0,05	0,062	25			
	0–25	0,5	0,62	:5	1,25		
50	0–250	5	6,2	5			
	-1-0-1,5	0,05	0,0625 0,625				
	-1-0-24	0,5					
	0–4	0,05	0,1				
00	0–40	0,5	1				
80	0–400	5	10		2		
	-1-0-3	0,05	0.4				
	0–4	0,1	0,1				
40	0–40	1	1				
40	0–400	10	10		1		
	-1-0-3	0,1	0,1				
	0–1	0,05	0,02	.5			
20	0–10	0,5	0,2				
	0–100	5	2,5		0,5		
	-1-0	0,05		0,025			
	-1-0-9	0,5	0,2				
	0–1,6	0,1	0,04				
40	0–16	1	0,4		2.4		
16	0–160	10	4		0,4		
	-1-0-15	1	0,4				

Основные этапы регулировки

Число делений	Диапазон показаний,	Цена деления,	Допускаемая основная погрешность					
число делении	kgf/cm²	kgf/cm²	kgf/cm²	в долях от цены деления				
		Класс точности 2,5						
	0–1,6	0,05	0,04					
32	0–16	0,5	0,4	0,8				
32	0–160	5	4	0,0				
	-1-0-0,6	0,05	0,4					
	0–2,5	0,1	0,0625					
	0–25	1	0,625					
25	0–250	10	6,25	0,625				
	-1-0-1,5	0,1	0,0625					
	-1-0-24	1	0,625					
	0–4	0,2	0,1					
20	0–40	2	1	0,5				
	-1-0-3	0,2	0,1					
	Класс точности 4							
	0–10	0,5	0,4					
20	0–100	5	4	0,8				
	-1-0-9	0,5	0.4					
	0–10	0,2	0,4					
EO	0–100	2	4	2				
50	-1-0	0,02	0,04	2				
	-1-0-9	0,2	0,4					
	0-1,0	0,05	0,064					
	0–16	0,5	0,64					
32	0–160	5	6,4	1,28				
	-1-0-0,6	0,05	0,064					
	-1-0-15	0,5	0,64					
	0-2,5	0,1	0,1					
	0–25	1	1					
25	0–250	10	10	1				
	-1-0-1,5	0,1	0,1					
	-1-0-24	1	1					

Окончание таблицы 5

Число делений	Диапазон	Цена деления,	Допускаемая основная погрешность			
	показаний, kgf/cm²	kgf/cm²	kgf/cm²	в долях от цены деления		
	0–2,5	0,05	0,1			
	0–25	0,5	1			
50	0–250	5	10	2		
	-1-0-1,5	0,05	0,1			
	-1-0-24	0,5	1			
	0–4	0,1	0,16			
40	0–40	1	1,6	1.0		
40	0-400	10	16	1,6		
	-1-0-3	0,1	0,16			
30	0–6	0,2	0,24			
	0–60	2	2,4	1,2		
	-1-0-5	0,2	0.04			
60	0–6	0,1	0,24			
	0–60	1	2,4	0.4		
	0-600	10	24	2,4		
	-1-0-5	0,1	0,24			

Справочная информация

Для обозначение степень защиты от воздействия окружающей среды используется система кодов IP согласно ГОСТ 14254-96. Степень защиты кодируется в виде IP XY, где X — степень защиты от твердых тел и пыли, а Y — степень защиты от влаги.

Степень защиты Таблица 6

Степень защиты	Защиты от твердых тел (I)	Защиты от влаги (Р)
0	Защита отсутствует	Защита отсутствует
1	Защита от тел диаметром более 50 мм	Защита от вертикально падающих капель воды
2	Защита от тел диаметром более 12 мм	Защита от капель воды, падающих под углом 15° от вертикали
3	Защита от тел диаметром более 2,5 мм	Защита от дождя, падающего под углом 60° от вертикали
4	Защита от тел диаметром более 1 мм	Защита от брызг воды, попадающих на оболочку с произвольного направления
5	Проникновение пыли не приводит к нарушению работоспособности изделия (системы)	Защита от струи воды, выбрасываемой с произвольного направления
6	Проникновение пыли полностью исключается	Защита от сильной струи воды, выбрасываемой с произвольного направления
7	Не предусмотрено	Временная защита от проникновения воды при погружении на глубину порядка 150 мм
8	Не предусмотрено	Защита от проникновения воды при погружении на глубину, определяемую изготовителем

Справочная информация

Соотношение единиц давления

Таблица 7

	bar	mbar	Па	кПа	МПа	КГС/ММ ²	КГС/СМ ²	физ.атм.	мм рт.ст.	м вод.ст.	мм вод.ст.	psi
1 bar	1	1000	100000	100	0,1	0,01019716	1,019716	0,986923	750,062	10,19716	10197,16	14,50377
1 mbar	0,001	1	100	0,1	0,001	0,0000101972	0,001019716	0,000986923	0,750062	0,01019716	10,19716	0,01450377
1 Па	0,00001	0,01	1	0,001	0,000001	0,000000102	0,000010197	0,000009869	0,00750062	0,001019716	0,1019716	0,000145038
1 кПа	0,01	10	1000	1	0,001	0,0001019716	0,01019716	0,00986923	7,50062	0,1019716	101,9716	0,1450377
1 МПа	10	10000	1000000	1000	1	0,1019716	10,19716	9,86923	7500,62	101,9716	101971,6	145,0377
1 кгс/мм²	98,0665	98066,5	9806650	9806,65	9,80665	1	100	96,7841	73555,9	1000	100000	1422,3344
1 кгс/см²	0,980665	980,665	98066,5	98,0665	0,0980665	0,01	1	0,967841	735,559	10	10000	14,223344
1 физ.атм.	1,01325	1013,25	101325	101,325	0,101325	0,01033227	1,033227	1	760	10,33227	10332,27	14,6959
1 мм рт.ст.	0,001333224	1,333224	133,3224	0,1333224	0,000133322	0,000013951	0,00135951	0,001315789	1	0,01360	13,60	0,019336
1 м вод.ст.	0,0980665	98,0665	9806,65	9,80665	0,00980665	0,001	0,1	0,0967841	73,556	1	1000	1,4223274
1 мм вод.ст.	0,000098067	0,0980665	9,80665	0,00980665	0,000009807	0,000001	0,0001	0,000096784	0,073556	0,001	1	0,001422327
1 psi	0,06894757	68,947570	6894,757	6,894757	0,006894757	0,0070307	0,070307	0,068046	51,715217	0,70307	703,07	1