МАНОМЕТРЫ ЭКМ и ЭКН, ВАКУУММЕТРЫ ЭКВ и ЭКТ, МАНОВАКУУММЕТРЫ ЭКМВ и ЭКТН ЭЛЕКТРОКОНТАКНЫЕ (СИГНАЛИЗИРУЮЩИЕ)

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

1. НАЗНАЧЕНИЕ

Манометры (ЭКМ), вакуумметры (ЭКВ), мановакуумметры (ЭКМВ), напоромеры (ЭКН), тягомеры (ЭКТ), тягонапоромеры (ЭКТН) показывающие сигнализирующие (в дальнейшем приборы) предназначены для управления внешними электрическими цепями от сигнализирующего устройства прямого действия и:

- <u>без наполнителя</u> для измерения давления жидких и газообразных неагрессивных некристаллизующихся сред (жидкостей, газа, пара, в т.ч. кислорода, ацетилена, хладонов 12, 22, 134a, 142, 404a, 502);
- <u>с наполнителем (виброустойчивый)</u> для измерения давления с повышенной пульсацией жидких и газообразных неагрессивных некристаллизующихся сред (жидкостей, газа, пара, в т.ч. кислорода, ацетилена, хладонов 12, 22, 134a, 142, 404a, 502).
- <u>сухой виброустойчивый (СВу)</u> для измерения давления с повышенной пульсацией жидких и газообразных неагрессивных некристаллизующихся сред (жидкостей, газа, пара, в т.ч. кислорода, ацетилена, хладонов 12, 22, 134a, 142, 404a, 502).

Приборы коррозионно-стойкого исполнения «НН» могут применяться для измерения давления агрессивных не кристаллизирующихся жидкостей, газов, паров, не вступающих в активное взаимодействие с нержавеющей сталью марок 12X18H9(10)T, 36HXTЮ и др.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 2.1. Диаметр корпуса прибора, мм: 50, 63, 80, 100, 160
- 2.2. Диапазон показаний и класс точности прибора указаны на циферблате.
- 2.3. Диапазон измерений избыточного давления должен быть от 0 до 75 % диапазона показаний, вакуумметрического давления равен диапазону показаний.
 - 2.4. Диапазон уставок сигнализирующего устройства:
- от 5 до 95 % диапазона показаний для диапазона измерений от 0 до 100%.
- 2.5. Исполнение сигнализирующего устройства указывается в паспорте на прибор. Подключение внешних цепей приборов исполнения III-VI по ГОСТ 2405-88 (Рис.3).
- 2.6. Предел допускаемой основной погрешности срабатывания сигнализирующего устройства и предел допускаемой основной погрешности показаний после срабатывания сигнализирующего устройства (за пределами диапазона уставок), выраженные в процентах диапазона показаний составляют:

Таблица 1

Класс точности	Предел допускаемой основной погрешности			
точности прибора	срабатывания			
	сигнализирующего устройства, %			
Для пр	иборов на микроперключателях			
1,0	± 1,5			
1,5	± 2,5			
2,5	± 4,0			
Для приборо	ов на магнитомеханических контактах			
1,0				
1,5	4,0			
2,5				

2.7. Управление внешними электрическими цепями осуществляется с помощью встроенного в прибор сигнализирующего устройства (датчика граничных сигналов), приводимого в действие стрелкой, показывающей фактическое значение измеряемого давления. Электрическое соединение осуществляется с помощью выведенного через стенку корпуса кабельного ввода.

Модели используемых в приборах сигнализирующих устройств указаны в таблице 2.

Таблица 2

Тип сигнализирующего	Рабочее на	апряжение, В	Коммутируемый ток, А, тах /
устройства	Переменное, 50 Гц	Постоянное	разрывная мощность, ВА (Вт)
Микровыключатели "Вм"	110, 230	24 - 230	4,5/500(96)
Электромеханическое "Эк"	24 - 380	24 - 230	1,0/50(30)
Электронное «Эе»	150	150	0,5/10

- 2.8. Приборы устойчивы к воздействию температуры окружающего воздуха от минус 25(-40; -60) до плюс 60°C
- В коррозионностойком исполнении по умолчанию приборы устойчивы к воздействию измеряемой температуры до +200°С.
- 2.9. Приборы относятся к восстанавливаемым, ремонтируемым, двухфункциональным изделиям.
- 2.10. Степень защиты приборов от пыли и воды IP40 (чёрный корпус), IP54(IP65) (нержавеющий корпус) по ГОСТ 14254-96.
 - 2.11. Масса прибора не более 2,4 кг.
- 2.12. Габаритные и присоединительные размеры приборов не превышают указанных на рис.2.
- 2.13. Пределы допускаемой основной погрешности приборов, выраженные в процентах диапазона показаний, должны составлять \pm 1,0 %, \pm 1,5 %, \pm 2,5 %, для классов точности 1,0, 1,5, 2,5 соответственно.

Примечание – Предел допускаемой основной погрешности показаний после срабатывания сигнализирующего устройства (за пределами заданных значений сигнализации) не нормируется.

- 2.14. После сброса давления при установленных пределах сигнализации стрелка должна устанавливаться на нулевую отметку с отклонением, не превышающим 4 % диапазона показаний.
 - 2.15. Число срабатываний контактов сигнализирующего устройства приборов 200000.
- 2.16. Чувствительные элементы приборов должны быть герметичны под воздействием перегрузки и переменного давления по ГОСТ 2405-88.
- 2.17. Приборы в транспортной таре должны быть прочными к ударам со значением пикового ударного ускорения 98 м/с2, длительность ударного импульса 16 мс, число ударов 1000 \pm 10, действующим в направлении, обозначенном на таре манипуляционным знаком "Верх".
- 2.18. Для приборов, у которых в качестве чувствительного элемента используются плоские мембраны, через наклонную черту указывается диаметр мембраны 120 мм.

3 МОНТАЖ И ХРАНЕНИЕ

- 3.1. Внешние виды приборов приведены на рисунках 1-2.
- 3.2. При наружной установке приборы должны быть защищены от прямого воздействия солнечного излучения и атмосферных осадков.
- 3.3. Категорически запрещается монтировать прибор (вворачивать в резьбовое гнездо) воздействием на корпус. Монтаж в резьбовое соединение допускается только гаечным ключом, устанавливаемым на квадрат или шестигранник присоединительного штуцера.
- 3.4. Установка сигнальных стрелок (перевод уставок) и электрический монтаж кабельного ввода должны производиться с обесточенной сетью коммутации!
- 3.5 Подключение электрической цепи к прибору производится четырехжильным кабелем согласно таблице подсоединения (см. рис.3).

Уплотнение кабеля в кабельном вводе корпуса должно обеспечивать пылебрызгонепроницаемость кабельного ввода.

3.6 Установка указателей сигнализирующего устройства:

одна из сигнальных стрелок устанавливается в нужное положение путём нажатия отверткой на триб перевода и его вращения; вторая сигнальная стрелка устанавливается вращением отвёрткой триба перевода без нажатия на него.

- 3.7. По окончании монтажа проверить сопротивление изоляции и сопротивление заземления.
- 3.8. При подаче измеряемой среды в рабочую полость прибора необходимо выдержать время для стабилизации показаний, затем перекрыть подводящий клапан. Стабильность показаний свидетельствует о качественных монтажных соединениях и работоспособности прибора. В противном случае проверить монтажные соединения и при невозможности устранения неполадок собственными силами обратиться к представителю производителя.
- 3.9. Упакованные приборы должны храниться в неотапливаемых помещениях с естественной вентиляцией при температуре окружающего воздуха от минус 50 до плюс 50 °C и относительной влажности (95±3) % при 35 °C.

ПРИКЛАДЫВАТЬ УСИЛИЕ К КОРПУСУ ПРИБОРА КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ!

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1. Источником опасности при монтаже и эксплуатации приборов является электрический ток и давление измеряемой среды.
- 4.2. При испытаниях и эксплуатации корпус приборов должен быть заземлен. Размещение приборов при монтаже должно обеспечивать удобство заземления и проведения периодической его проверки.

4.3. Установка сигнальных стрелок и электрический монтаж кабельного ввода должны производиться с обесточенной сетью коммутации!

- 4.4. При всех работах с приборами необходимо соблюдать следующие основные меры предосторожности:
- перед каждым включением прибора необходимо проверить его заземление и исправность предохранителей в системе потребителя;
- устранение дефектов, замена, присоединение и отсоединение приборов от магистралей должно производиться только при полном отсутствии давления и при отключенных электрических коммуникациях;
- приборы должны применяться для измерения только тех сред, для которых они предназначены.
- 4.5. При работе с приборами необходимо соблюдать правила, изложенные в документах:
- "Общие правила техники безопасности и производственной санитарии для предприятий и организаций машиностроения", разделы X, XY;
- "Правила технической эксплуатации электроустановок потребителей и правила техники безопасности при эксплуатации электроустановок потребителей", раздел Б III до Б III-7.
- 4.6. По способу защиты человека от поражения электрическим током приборы относятся к классу I по ГОСТ 12.2.007.0.
- 4.7. Минимальное допускаемое электрическое сопротивление изоляции цепей должно быть:
- 20 MOм при температуре окружающего воздуха (20 \pm 5) °C и относительной влажности от 30 до 80 %:
- 5 МОм при верхнем значении температуры рабочих условий по п.1.2.13;
- 1 МОм при верхнем значении относительной влажности рабочих условий по п.1.2.14. Доступные для прикосновения токопроводящие части прибора, которые в случае неисправности прибора могут оказаться под опасным напряжением, должны быть электрически соединены с зажимом защитного заземления. Сопротивление между зажимом защитного заземления и доступными для прикосновения токопроводящими частями не должно превышать 0,1 Ом.
- 4.8. Изоляция электрических цепей относительно корпуса и между собой в зависимости от условий испытаний должна выдерживать в течение 1 мин испытательное напряжение 1,5 кВ практически синусоидальной формы частотой от 45 до 65 Гц при нормальных условиях испытаний.
- 4.9. Категорически запрещается в течение гарантийного срока вскрывать прибор без представителя производителя.

. 5. МЕТОДИКА ПОВЕРКИ

- 5.1. Периодическая поверка приборов в процессе эксплуатации производится по МИ 2124-90 «ГСИ. Манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры и тягонапоромеры показывающие и самопишущие. Методика поверки».
 - 5.2. Межповерочный интервал 2 года (для РБ межповерочный интервал 1 год).

6. КОМПЛЕКТНОСТЬ

Таблица 3

Наименование	Количество	Примечание
Прибор	1 шт.	
Паспорт	1 экз.	
Руководство по	1 экз.	При поставке партии приборов допускается
эксплуатации		прилагать по одному экземпляру на каждые
		5 приборов, отправленные в один адрес

7. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

- 7.1. Ремонт и устранение неисправностей приборов может производиться непосредственно производителем или уполномоченным им лицом. После ремонта приборы подлежат поверке. Поверка приборов в процессе эксплуатации проводится в соответствии с МИ 2124-90.
- 7.2 Перечень некоторых наиболее часто встречающихся или возможных неисправностей и способы их устранения приведены в таблице 4.

Таблица 4

		140,1444 1		
Возможная	Вероятная причина	Метод		
неисправность		устранения		
Стрелка прибора	Засорился канал штуце-	Прочистить канал		
стоит неподвижно как	ра или подводящая давле-	штуцера, сняв прибор с		
при понижении давле-	ние магистраль	объекта.		
ния так и при его по-		Продуть магистраль		
вышении		сжатым воздухом		
Прибор «не дер-	Недостаточная герметичность	Сменить прокладку		
жит» давление	соединения прибора с местом	между штуцером и поса-		
	отбора давления	дочным местом		
Показывающая	Показывающая стрелка	Выправить стрелку		
стрелка движется не-	задевает за циферблат или			
равномерно (скачком)	за указатели			
Нет сигнала "мак-	Неисправность подводящего ток	Устранить неисправ-		
симум" или "мини-	кабеля или места соединения	ность и проверить напря-		
мум" или нет обоих	кабеля с клеммной колодкой.	жение на клеммной ко-		
сигналов	Неисправность	лодке.		
	электроконтактного механизма	Отремонтировать элет-		
		роконтактный механизм		

8. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

При неисправности прибора в период гарантийного срока потребителем должен быть составлен акт с указанием признаков неисправности. Акт с указанием точного адреса потребителя высылается предприятию-изготовителю.

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ ПРИБОРОВ С ЭЛЕКТРОКОНТАКТНОЙ ПРИСТАВКОЙ

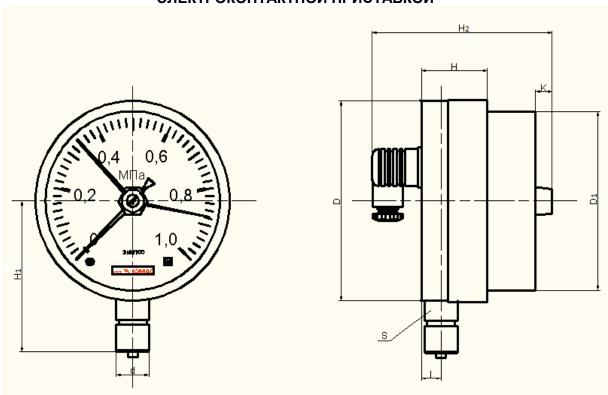


Рисунок 1. Вид электроконтактного манометра на базе магнитомеханических контактах

<u>Для электроконтакных(сигнализирующих) манометров в нержавеющем корпусе</u> Размеры в миллиметрах

D	d	D1	Н	H₁	H ₂	s	I	k
160	M20x1,5-8g	137,7	49	108,8	152,8	22	16,5	
	G1/2-B	, .					_,,_	14
100	M20x1,5-8g	85	40,2	84,4	151,3	22	16	
. 30	G1/2-B		, _	0 1, 1	, .			

<u>Для электроконтакных(сигнализирующих) манометров в металлическом(черном) корпусе</u>

Размеры в миллиметрах

D	d	D1	Н	H₁	H ₂	S	-	k
150	M20x1,5-8g	134,5	. 38,8	116	. 115	20	15	10
100	G1/2-B	, .				22		
100	M20x1,5-8g	88		85		20	17	
	G1/2-B					22		

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ ПРИБОРОВ НА МИКРОВЫКЛЮЧАТЕЛЯХ

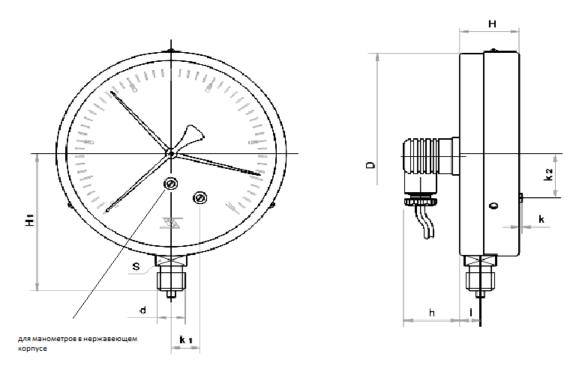


Рисунок 2. Вид электроконтактного манометра на базе микропереключателей

Для электроконтакных(сигнализирующих) манометров в нержавеющем корпусе

Размеры в миллиметрах Н H_1 S h k_2 D d M20x1,5-8g 100 80 G1/2-B 70 41,5 18,7 14,4 22 M20x1,5-8g 160 98 G1/2-B

<u>Для электроконтакных(сигнализирующих) манометров в металлическом(черном) корпусе</u>

Размеры в миллим									
D	d	Н	H ₁	h	k	k ₁	k ₂	I	S
	u		не более						
100	M20x1,5-8g		80		2	20,4	35,2	14,4	
	G1/2-B		80						22
160	M20x1,5-8g	43	110	41,5					
	G1/2-B		. 10						

ПОДКЛЮЧЕНИЕ ВНЕШНИХ ЦЕПЕЙ ПРИБОРОВ (СОГЛАСНО ГОСТ 2405-88)

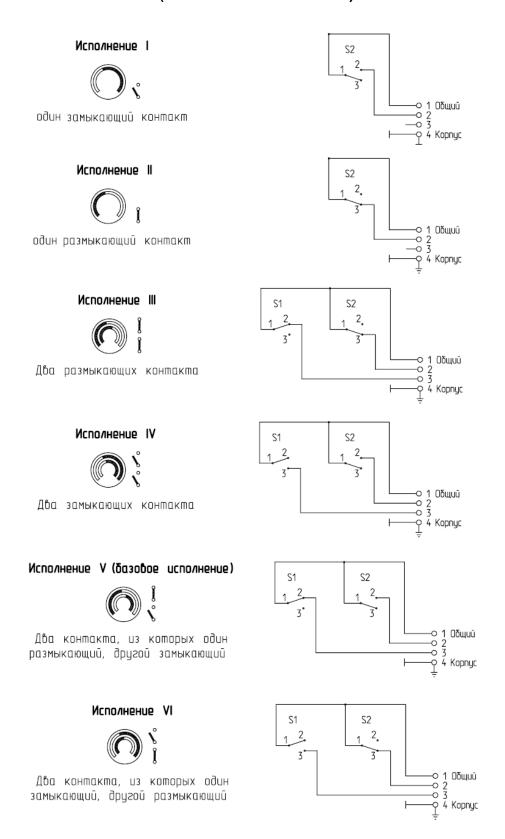


Рисунок 3. Принципиальные электрические схемы

Техническая продукция защищена патентами России, Украины, Беларуси. Нарушение интеллектуальной собственности, как на изделие, так и на отдельные узлы преследуется по закону.